

# Белорусский национальный технический университет

Кафедра «Техническая физика»

Лаборатория ядерной и радиационной безопасности

Лабораторный практикум по дисциплине «Защита от ионизирующего излучения»

Лабораторная работа № 2

# Взаимодействие альфа-частиц с веществом

Описание теории взаимодействия альфа частиц с веществом представлено в Главе 3 (стр. 40) учебного пособия «Практикум по ядерной физике», под ред. В.О. Сергеева. – СПб.: Изд-во СПбГУ, 2006. (см. в электронном виде в разделе «Вспомогательные материалы»)

**Цель работы:** изучить основные механизмы взаимодействия альфа-излучения с веществом; определить энергию альфа-частиц исследуемого нуклида по их пробегу в воздухе

**Приборы и материалы:** универсальный лабораторный спектрометр с полупроводниковым поверхностно-барьерным альфа-детектором; источник альфа-излучения из комплекта образцовых спектрометрических альфа-источников (ОСАИ); поглотитель – воздух.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. ОПРЕДЕЛЕНИЕ ПРОБЕГА. СВЯЗЬ ПРОБЕГА С ЭНЕРГИЕЙ

Пробег частицы R можно определить как расстояние, которое она проходит до момента полной потери кинетической энергии. Характерной особенностью  $\alpha$ -частиц является существование у них определенного пробега: треки частиц одной энергии в камере Вильсона представляют собой прямые линии одной и той же длины с небольшим разбросом в одну и другую сторону.

Для выбранной среды величина энергетических потерь на единицу пути (-dE/dx) для  $\alpha$ -частиц является функцией только скорости, т. е. только кинетической энергии: (-dE/dx) = f(E).

Проинтегрировав это выражение по всем значениям E от  $E_0$  до 0 ( $E_0$  – начальная энергия частицы), можно получить средний пробег  $\alpha$ -частицы в веществе  $\overline{R}$ :

$$\overline{R}(E) = \int_{E_0}^{0} \left(-dE/dx\right)^{-1} dE.$$

Торможение  $\alpha$ -частиц в среде происходит в результате большого числа упругих и неупругих столкновений с атомами среды, в каждом из которых теряется некоторая флуктуирующая от столкновения к столкновению доля энергии. Поэтому длины пробегов  $R_i$  отдельных моноэнергетических частиц будут флуктуировать относительно среднего значения пробега  $\overline{R}$ .

На практике для определения среднего пробега чаще всего используют эмпирические выражения. Так, для  $\alpha$ -частиц, испускаемых при естественном  $\alpha$ -распаде, т. е. имеющих энергию  $E_{\alpha} \sim 4 \div 7$  МэВ, средний пробег в воздухе при нормальных атмосферных условиях может быть найден из формулы Гейгера, полученной эмпирическим путем:

$$\overline{R}_{\alpha}^{\text{воздух}} = 0.318 \cdot E_{\alpha}^{3/2} ,$$

где  $\overline{R}$  – средний пробег  $\alpha$ -частиц, см;  $E_{\alpha}$  – энергия  $\alpha$ -частиц, МэВ.

Для других сред, отличных от воздуха, пробег  $\alpha$ -частиц можно представить как

$$\bar{R}_x = \frac{1}{\rho_x} 1.78 \cdot 10^{-4} \cdot A_x^{1/3} E_\alpha^{3/2},$$

где  $A_x$  – массовое число ядер вещества X, энергия  $\alpha$ -частиц  $E_\alpha$  выражена в МэВ, а плотность вещества  $\rho_x$  – в г/см³.

При экспериментальном определении пробега исследуют зависимость числа детектируемых  $\alpha$ -частиц  $N_{\alpha}(x)$  от толщины х вещества-поглотителя. Форма кривой поглощения  $N_{\alpha}(x)$  зависит от геометрии эксперимента.

Различают средний, экстраполированный и максимальный пробеги.

**Максимальный пробег** (  $R_{\max}$  ) — это минимальная толщина поглотителя, при которой поглощаются практически все падающие на него  $\alpha$ -частицы.

**Средний пробег** ( $\overline{R}$ ) – это толщина поглотителя, при прохождении которой число  $\alpha$ -частиц уменьшится вдвое.

**Экстраполированный пробег** ( $R_{_{9}}$ ) получается при экстраполяции наклонной части кривой поглощения.

Очевидно, что используя формулу Гейгера, можно оценить энергию а-частиц, подставляя длину пробега, найденную экспериментальным путем.

При экспериментальном измерении длины пробега α-частиц в когда увеличение толщины воздушной прослойки достигается путем увеличения расстояния между источником и детектором, происходит уменьшение телесного угла приема детектора. Это приводит уменьшению K зарегистрированных детектором частиц не только за счет их поглощения в воздухе, но и за счет изменения геометрии эксперимента. Частицы, которые первоначально попадали в угол приема детектора, после отодвигания детектора уже в него не попадают из-за уменьшения угла приема. Как следствие, экспериментальная кривая поглощения будет существенно теоретической кривой, рассчитанной отличаться ОТ параллельного пучка.

Пусть D - диаметр активной поверхности дискового источника, d - диаметр входного окна детектора, и х – расстояние между ними. Чтобы учесть убыль  $\alpha$ -частиц, не связанную с поглощением в воздухе, а вызванную изменением геометрии эксперимента, найдем зависимость отношения числа частиц N, испущенных источником к числу частиц N попадающих на детектор от расстояния х при заданных D и d. Если в эксперименте используется неточечный источник, и размер источника,

детектора, а также расстояние между ними – величины одного порядка, то точный расчет отношения  $\frac{N}{N'}$  представляет собой довольно громоздкую формулу.

В таблице 1 приведены значения геометрического фактора  $G=\frac{N}{N'}$ , характеризующего уменьшение числа регистрируемых частиц за счет изменения геометрии эксперимента. Приведенные значения G=G(D,d,x) рассчитаны для диаметра рабочей поверхности детектора d=7 мм и диаметра активной поверхности источника D=10 мм.

Таблица 1. Значения геометрического фактора G как функции расстояния x между источником и детектором, рассчитанные для фиксированных диаметров источника (активная часть D=10 мм) и рабочей поверхности детектора (d=7 мм).

| x, mm                      | G        |  |  |  |  |  |
|----------------------------|----------|--|--|--|--|--|
| 1                          | 2,69248  |  |  |  |  |  |
| 2                          | 3,59442  |  |  |  |  |  |
| 3                          | 4,73902  |  |  |  |  |  |
| 4                          | 6,13704  |  |  |  |  |  |
| 5                          | 7,80346  |  |  |  |  |  |
| 2<br>3<br>4<br>5<br>6<br>7 | 9,75174  |  |  |  |  |  |
| 7                          | 11,9927  |  |  |  |  |  |
| 8                          | 14,53464 |  |  |  |  |  |
| 9                          | 17,38376 |  |  |  |  |  |
| 10                         | 20,54468 |  |  |  |  |  |
| 11                         | 24,02084 |  |  |  |  |  |
| 12                         | 27,81478 |  |  |  |  |  |
| 13                         | 31,92843 |  |  |  |  |  |
| 14                         | 36,36321 |  |  |  |  |  |
| 15                         | 41,12024 |  |  |  |  |  |
| 16                         | 46,20034 |  |  |  |  |  |
| 17                         | 51,60419 |  |  |  |  |  |
| 18                         | 57,33227 |  |  |  |  |  |
| 19                         | 63,38501 |  |  |  |  |  |
| 20                         | 69,76271 |  |  |  |  |  |
| 21                         | 76,46563 |  |  |  |  |  |
| 22                         | 83,49398 |  |  |  |  |  |
| 23                         | 90,84793 |  |  |  |  |  |
| 24                         | 98,52762 |  |  |  |  |  |

| 25 | 106,53315 |
|----|-----------|
| 26 | 114,86464 |
| 27 | 123,52214 |
| 28 | 132,50573 |
| 29 | 141,81547 |
| 30 | 151,4514  |
| 31 | 161,41356 |
| 32 | 171,70199 |
| 33 | 182,31672 |
| 34 | 193,25777 |
| 35 | 204,52517 |
| 36 | 216,11893 |
| 37 | 228,03907 |
| 38 | 240,28561 |
| 39 | 252,85856 |
| 40 | 265,75793 |
| 41 | 278,98373 |
| 42 | 292,53598 |
| 43 | 306,41467 |
| 44 | 320,61981 |
| 45 | 335,15142 |
| 46 | 350,0095  |
| 47 | 365,19405 |
| 48 | 380,70507 |
| 49 | 396,54258 |
| 50 | 412,70657 |
|    |           |

#### ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

### 1. Подготовка спектрометра к работе

- 1.1. Включите спектрометр нажатием сетевой кнопки с тыльной стороны прибора.
- 1.2. Запустите программу «Spectrometer».
- 1.3. Установите питание детектора на 28% от полной мощности, задайте максимальный режим усиления на ФЭУ (выбором значения «16» и «×4» для опции «Усиление»).
- 1.4. Установите нижний порог шкалы детектирования 80, отсекая тем самым из диапазона регистрации низкоэнергетические импульсы, связанные, в основном, с шумами самого детектора.
- 1.5. Установите время экспозиции 180 секунд.
- 1.6. После установки всех параметров следует нажать кнопку «Применить». Запуска на регистрацию производится кнопкой «Пуск». После истечения времени экспозиции регистрации происходит остановка автоматически. Принудительная остановка регистрации быть может выполнена с помощью кнопки «Стоп».
- 1.7. В центральном поле окна программы во время набора будет отображаться спектр регистрируемого излучения как зависимость числа зарегистрированных импульсов от номера канала, в котором произошла регистрация. Суммарное количество зарегистрированных импульсов отображается на панели «Integrate:».
- 1.8. Для повторного запуска с теми же параметрами нажмите кнопки «Сброс» и «Пуск».

#### 2. Изучение прохождения альфа-частиц через вещество

3.1. Проанализируйте необходимость регистрации фонового альфа-излучения

- 3.2. Получите у преподавателя источник альфа-излучения, (запишите название радионуклида в конспект) установите его над детектором так, чтобы расстояние xповерхностью источника между И входным окном детектора (толщина воздушного слоя) составило 2 мм. Учтите, что входное окно детектора (золотая фольга) утоплено на 1  $\mathbf{M}\mathbf{M}$ относительно верхней плоскости детектора.
- 3.3. Зарегистрируйте за время экспозиции число альфа-частиц N', дошедших детектора. Результат запишите в таблицу.
- 3.4 Откорректируйте значение регистрируемого числа частиц с учетом потерь на изменение угла детектирования, умножив на геометрический фактор G. Результат N=N'·G запишите в таблицу 2.
- 3.5. Последовательно повторяйте пп. 3.3-3.4, увеличивая расстояние *х* между источником и чувствительной поверхностью детектора на 4 мм в области медленно меняющихся значений N на 1 мм в области быстро меняющихся значений. Прекратите измерения при фоновых значениях детектируемого числа частиц.

Таблица 2.

| Толщина<br>воздушного слоя<br>х, мм                         | 2 | 6 | 10 | ••• | 22 | 23 | 24 | ••• |
|-------------------------------------------------------------|---|---|----|-----|----|----|----|-----|
| Число импульсов детектируемых от источника N'               |   |   |    |     |    |    |    |     |
| Геометрический<br>фактор G(R)                               |   |   |    |     |    |    |    |     |
| Число импульсов с поправкой на геометрический фактор N=N'·G |   |   |    |     |    |    |    |     |
| Погрешность <b>∆</b> N                                      |   |   |    |     |    |    |    |     |

#### 4. Завершение работы с установкой

- 4.1. Сразу же после завершения последнего измерения сообщите об этом преподавателю или сотруднику лаборатории, чтобы сдать источник. Не доставайте источник из держателя самостоятельно и не держите его в руках или на открытой поверхности вне защиты!
- 4.2. Уберите до нуля высокое напряжение на детекторе и нажмите кнопку «Применить». Закройте программу «Spectrometer» и выключите спектрометр.

# 5. Обработка результатов

- 5.1. Постройте график зависимости N'(x) числа отсчетов от альфа-источника как функцию толщины слоя x.
- 5.2. Постройте график зависимости N(x) числа отсчетов от альфа-источника с погрешностями как функцию толщины слоя x с учетом геометрической поправки G(D,d,x). Значения G(D,d,x)=G(x) для фиксированных значений диаметра источника D=10 мм и детектора d=7 мм представлены в Таблице 1.
- 5.3. Проанализируйте, как меняется в зависимости от толщины слоя воздуха поток альфа-частиц. Объясните наблюдаемую зависимость.
- 5.4. Из графика N(x) определите значения среднего  $\overline{R}$  , экстраполированного  $R_9$  и максимального  $R_{max}$  пробегов альфа-частиц.
- 5.5. По номограмме, представленной на рисунке 13, определите энергию  $E_{\alpha}$  альфа-частиц.
- 5.6. Также рассчитайте энергию альфа-частиц по формуле Гейгера, согласно которой пробег альфа-частиц с энергиями от 4 до 7 МэВ в воздухе описывается соотношением  $R_9$ = $kE_{\alpha}^{3/2}$ , где  $R_9$  пробег в см, k численный коэффициент, зависящий от температуры и давления воздуха (k=0.318

- при 15°C и 760 мм. рт. ст),  $E_{\alpha}$  энергия альфа-частиц в МэВ.
- 5.7. Сравните экспериментально полученное значение энергии альфа-частиц (п. 5.7) с истинным значением энергии использованного вами альфа-источника. Последнее можно уточнить, например, с использованием программы RadDecay.
- 5.8. В отчете представьте результаты в виде таблицы и графиков, значения пробегов, полученное на основе экспериментальных данных значение энергии альфа- $E_{\alpha}$ оценкой частиц С погрешности, сравнение экспериментально полученного значения  $E_{\alpha}$  с истинным значением энергии альфа-источника и анализ полученного результата.

#### Контрольные вопросы

- 1. Что такое альфа-частицы, каков их состав, в каких процессах они возникают и где они используются?
- 2. Какова энергия альфа-частиц, испускаемых естественно радиоактивными элементами?
- 3. Каковы основные процессы взаимодействия альфа-частиц с веществом?
- 4. Рассеяние альфа-частиц. Формула Резерфорда.
- 5. Ионизационное торможение альфа-частиц. Зависимость потерь энергии альфа-частиц от их начальной энергии.
- 6. Кривая Брэгга. Объяснить вид кривой Брэгга.
- 7. Пробег альфа-частиц. Зависимость пробега от начальной энергии альфа-частиц. Чем объясняется разброс пробегов альфа-частиц с одной и той же энергией?
- 5.9. Получите аналитически геометрическую поправку G(D,x) к значению детектируемого числа частиц при изменении расстояния x между точечным источником и детектором в виде диска с диаметром D.

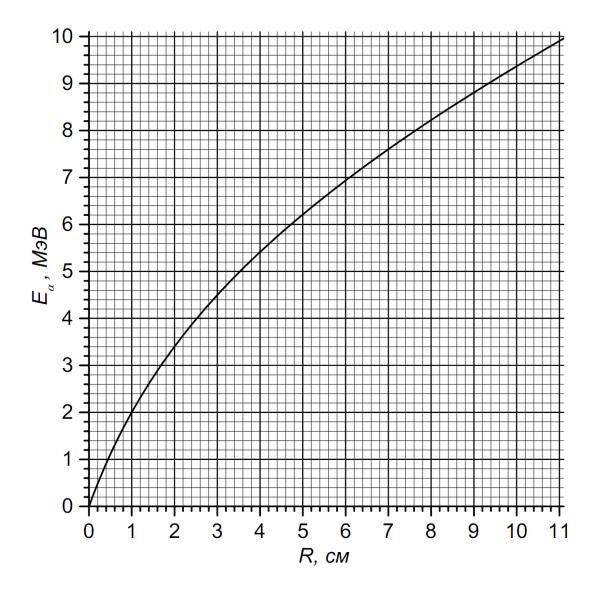



Рисунок 13. Связь между энергией  $E_{\alpha}$  и пробегом альфа-частиц в воздухе при атмосферном давлении 760 мм. рт. ст. и температуре 15°C